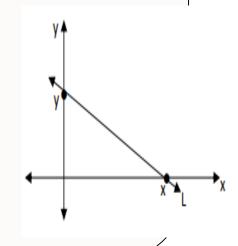


MATEMÁTICA

Rectas en el Plano

Docente: Susana M. Hueicha Hernández

Curso: Cuarto Medio A



Temuco, Octubre de 2020

Definición

- Una recta esta determinada por un conjunto infinito de **puntos colineales** (alineados en una sola dirección) en un plano.
- El nombre que recibe la expresión algebraica (función) que determina a una recta dada se denomina
 ECUACIÓN DE LA RECTA
- Toda recta tiene asociada una ecuación lineal con 2 variables.
 - La ecuación de una recta se puede escribir de manera general como:

$$ax + by + c = 0$$

Donde a, b, c son números reales; además a, b no son simultáneamente cero

Ej: 2x + 3y + 1 = 0 (ecuación general de la recta)

• La ecuación de una recta se puede escribir de manera principal como y = ax + b o y = mx + n donde a, b son números reales.

Ej: (desde la ecuación anterior)

2x+3y+1=0

(Ecuación General)

3y=-2x-1

y=-2x-1

3

y= -2x-1

(Ecuación principal de la recta)

3 3

Forma explicita de la ecuación \rightarrow y- $y_1 = m(x-x_1)$

• Se utiliza cuando se conocen la pendiente (m) y un punto (x_1, y_1)

Ej: Dado el punto (2,1) y pendiente m=2 determinar la ecuación de la recta

y-
$$y_1 = m(x-x_1)$$
 P(2, 1) M=2
y-1=2(x-2) $x_1 y_1$
y-1=2x-4
y = 2x-4+1
y = 2x-3

• Cuando se tienen 2 puntos de una recta P1 (x_1, y_1) y P2 (x_2, y_2) , la pendiente queda determinada por el cuociente entre la diferencia de las ordenadas y la diferencia de las abscisas de los puntos.

Es decir:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$x_2 \neq x_1$$

Ecuación de la recta dado 2 puntos

Sean P1(x_1 , y_1) y P2(x_2 , y_2) 2 puntos de una recta es posible determinar su ecuación.

Desde y-
$$y_1 = m (x-x_1)$$
 y $m = \frac{y_2 - y_1}{x_2 - x_1}$
Se tiene que: $|------|$

Se tiene que: $y-y_1 = \frac{y_2-y_1}{x_2-x_1} (x-x_1)$ Determinando así la ecuación de la recta dado 2 puntos

Determinando así la

Ej: Sean P1(4, 3) y P2 (-3, -2), determinar la ecuación de la recta que pasa por los puntos dados x_1 y_1 x_2 y_2

y-
$$y_1 = \frac{y_2 - y_1}{x_2 - x_1}$$
 (x- x_1) $y - 3 = \frac{5}{7}$ x- $\frac{20}{7}$

$$y-3 = \frac{-2-3}{-3-4} (x-4)$$

$$y-3 = \frac{-5}{-7} (x-4)$$

$$y-3 = \frac{5}{7}(x-4)$$

$$y - 3 = \frac{5}{7}x - \frac{20}{7}$$

$$y = \frac{5}{7} x - \frac{20}{7} + 3$$

$$y = \frac{5}{7}x + \frac{1}{7}$$

Forma principal

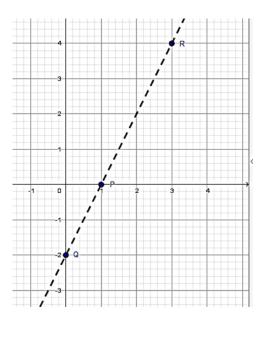
$$y - \frac{5}{7}x - \frac{1}{7} = 0$$

Forma general

Puntos colineales de una recta ---

Tres o más puntos se dicen colineales si pertenecen a una misma recta

y-
$$x_2$$
 +2=0 P(1,0) , Q(0,-2) , R(3,4) son colineales



■ Ej2:

P(1,0) , Q(0,-2) , R(3,a) determinar el valor de "a" para que los puntos sean colineales

Con P y Q se obtiene la ecuación de la recta

$$y - 0 = \frac{-2 - 0}{0 - 1} (x - 1)$$

$$y = \frac{-2}{-1} (x-1)$$

$$y = 2 (x-1)$$

R(3,a)
$$y-2x+2=0$$

 $a-2\cdot 3+2=0$
 $a-6+2=0$
 $a-4=0$
 $a=4$

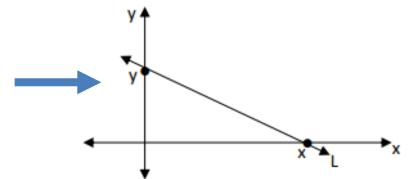
$$y = 2x-2$$
 (Forma principal)
 $y - 2x + 2 = 0$ (Forma general)

Los puntos P, Q y R son colineales pertenecientes a la recta y-2x+2=0

R (3,4); Los puntos P, Q y R son colineales pertenecientes a la recta y-2x+2=0

Intersección de la recta con los ejes X y Y

 Según la grafica que se muestra a continuación los puntos donde la recta L corta al eje x son de la forma (x, 0), y donde corta al eje y, de la forma (0, y)



1° Para determinar la intersección de la recta con el eje x, se debe encontrar el punto perteneciente al eje x donde su coordenada sea de la forma (x,0)

$$y = 0$$
 $4x+5\cdot0-20=0$
 $4x+0-20=0$
 $4x-20=0$
 $4x=20$
 $x=20$
 4
La recta intersecta al eje x en el punto (5,0)

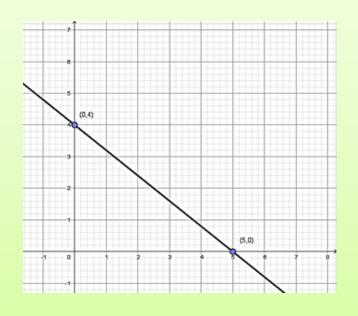
2° Del mismo modo, para determinar la intersección con el eje Y, se debe encontrar el punto perteneciente al eje Y donde su coordenada sea de la forma (0,Y)

Y=4

La recta intersecta al eje Y en el punto (0,4)

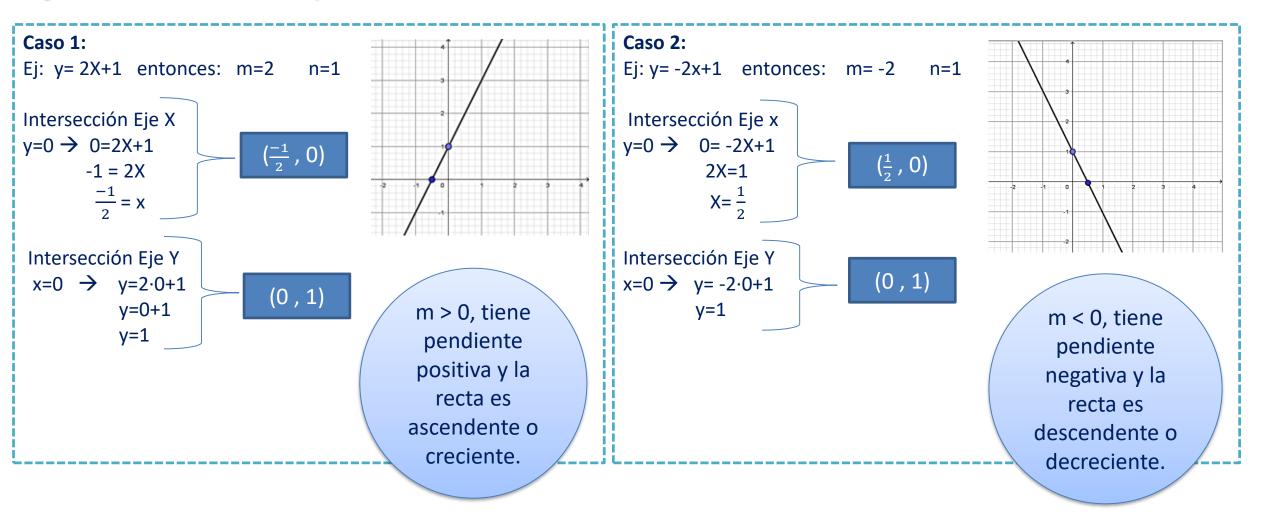
Grafica de la recta 4x+5y-20=0

• Eje X \rightarrow (5,0) Eje Y \rightarrow (0,4)



Pendiente de la recta y coeficiente de posición

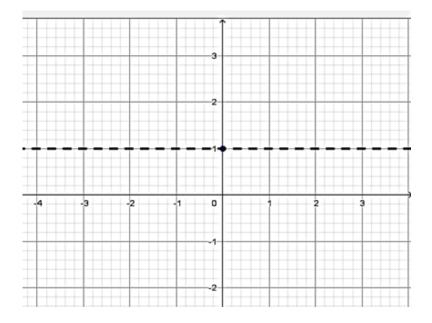
La **pendiente** indica la inclinación de la recta con respecto al **eje X** (abscisas). Se denota con la letra **m** y su signo indica si se trata de una recta que **asciende o desciende** (de izquierda a derecha)



Caso 3:

Ej: $y=1 \rightarrow y=0 \cdot x+1$ entonces: m=0 n=1

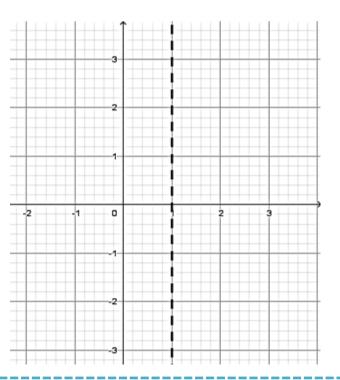
Si y = n, donde n es una constante, entonces se tiene m = 0 por lo tanto la pendiente es nula o cero y su recta es horizontal



Caso 4:

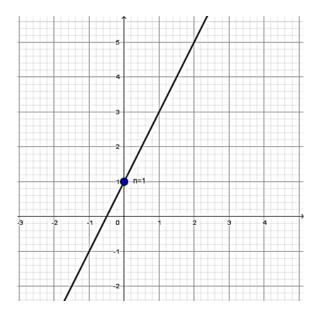
Ej: x=1

Si x = n, donde n es una constante, entonces m no está definida y la recta es vertical

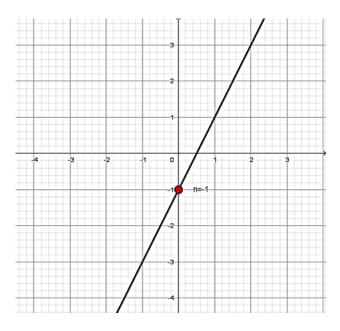


El **coeficiente de posición** indica la intersección de la recta con el eje Y

Intersección Eje y \rightarrow (0, 1)

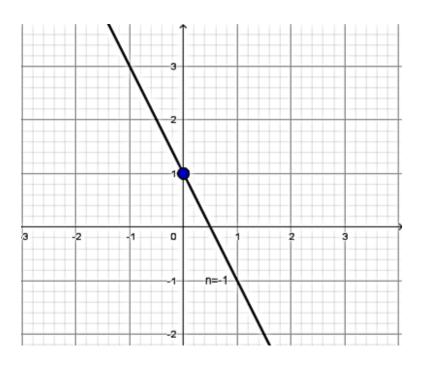


Intersección Eje y \rightarrow (0, -1)

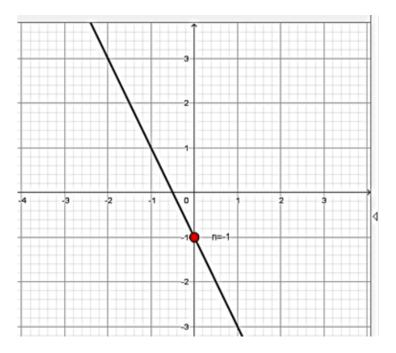


Ej 3: y = -2x + 1

Intersección Eje y \rightarrow (0, 1)



Intersección Eje y \rightarrow (0, -1)



Posiciones relativas de dos rectas en el plano

Rectas paralelas

- Dos o más rectas son paralelas si sus pendientes tienen el mismo valor, es decir, son iguales.
- Sean L1: $y = m_1 x + n_1 y L2$: $y = m_2 x + n_2$, entonces

$$L1//L2 \Leftrightarrow m_1 = m_2 \ \ y \ n_1 \neq n_2$$

Ej: Dadas las rectas x+y=3 y 2x+2y=2 , determinar si son paralelas

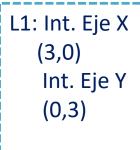
L1:
$$x+y=3$$

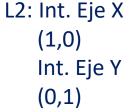
 $y=-x+3$
 $m_1=-1$
 $n_1=3$

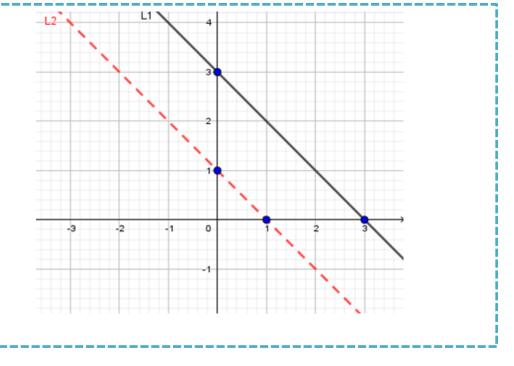
$$m_2 = -1$$

 $n_2 = 1$

$$m_1 = m_2$$
 y $n_1 \neq n_2$
-1 = -1 3 \neq 1
Las rectas son paralelas







Rectas coincidentes

• Dos rectas son coincidentes si sus pendientes son iguales y además si sus coeficientes de posición son iguales

• Sean L1: $y = m_1 x + n_1 y L2$: $y = m_2 x + n_2$, entonces

Ej: Dadas las rectas x+y=1 y 2x+2y=2, determinar si son coincidentes

L1:
$$y=-x+1$$
 $m_1=-1$

$$n_1 = 1$$

L2:
$$2y=-2x + 2$$

 $y=-\frac{2x}{2} + \frac{2}{2}$
 $y=-x + 1$

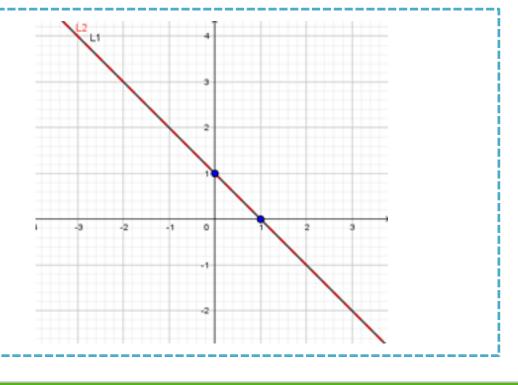
$$m_2 = -1$$

 $n_2 = 1$

$$m_1 = m_2$$
 y $n_1 = n_2$
-1 = -1 1=1

Las rectas son coincidentes

L2: Int. Eje X (1,0) Int. Eje Y (0,1)



Rectas perpendiculares

- Dos rectas son perpendiculares si el producto de sus pendientes es igual a -1
- Sean L1: $y = m_1 x + n_1 y L2$: $y = m_2 x + n_2$, entonces

L1
$$\perp$$
 L2 $\Leftrightarrow m_1 \cdot m_2 = -1$

Ej: Dadas las rectas 2x+y=1 $y y=\frac{1}{2}x+3$, determinar si son perpendiculares

L1:
$$2x+y=1$$

 $y=-2x+1$
 $m_1=-2$
 $n_1=1$

L2:
$$y = \frac{1}{2}x + 3$$

$$m_2 = \frac{1}{2}$$
$$n_2 = 3$$

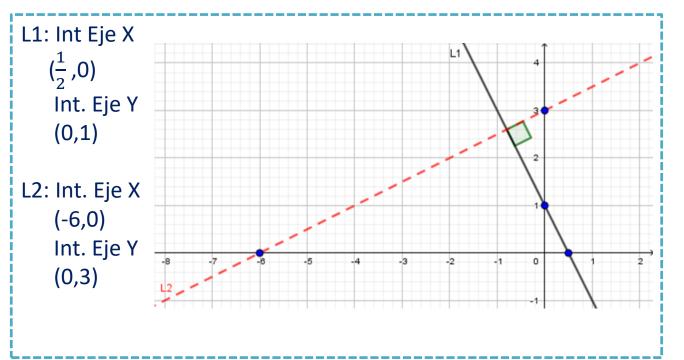
$$m_1 \cdot m_2 = -1$$

$$-2 \cdot \frac{1}{2} = -1$$

$$\frac{-2}{2} = -1$$

$$-1 = -1$$
Las rectas son

Las rectas son perpendiculares



Rectas secantes

- Dos rectas son secantes si sus pendientes son distintas
- Sean L1: $y = m_1 x + n_1 y L2$: $y = m_2 x + n_2$, entonces

Ej: Dadas las rectas 2x+4y=16 y 3x-4y=-6 determinar si son secantes

L1 es secante a L2 $\Leftrightarrow m_1 \neq m_2$

L1:
$$2x+4y=16$$

 $4x=-2x+16$
 $y=\frac{-2x}{4}+\frac{16}{4}$
 $y=\frac{-x}{2}+4$

 $m_1 \neq m_2$ $\frac{1}{2} \neq \frac{3}{4}$ Las rectas son secantes

L2: 3x-4 = -6 -4y = -3x - 6 / -1 4y = 3x + 6 y = 3x + 6 4 y = 3x + 3 $m_2 = \frac{3}{4}$ $m_2 = \frac{3}{4}$

